
Parallel calculation of electron multiple scattering using Lanczos algorithms

A. L. Ankudinov,1 C. E. Bouldin,2 J. J. Rehr,1 J. Sims,2 H. Hung2

1Department of Physics, University of Washington, Seattle, WA 98195 and
2National Institute of Standards and Technology, Gaithersburg, MD 20899

(Dated: November 29, 2001)

Real space multiple scattering calculations of the electronic density of states and x-ray spectra in
solids typically scale as the cube of the system and basis set size, and hence are highly demanding
computationally. For example, x-ray absorption near edge structure (XANES) calculations in solids
typically require clusters of order NR atoms and s, p, and d states for convergence, with NR between
about 102-103; for this case about 102 inversions of 9NR × 9NR matrices are needed, one for each
energy point. We discuss here two ways to speed up these calculations: 1) message passing interface
(MPI) parallel processing, and 2) fast, Lanczos multiple scattering algorithms. Together these
algorithms can reduce computation times typically by two orders of magnitude. These are both
implemented in a generalization of the ab initio self-consistent FEFF8 code, which thus makes
XANES calculations in complex systems with of order 103 atoms practical. The Lanczos algorithm
also yields a natural crossover between full and finite-order multiple scattering with increasing
energy, thus differentiating the extended and near-edge regimes.

PACS numbers: 71.10.+x 71.20.Ad 78.70.Dm

I. INTRODUCTION

Multiple scattering (MS) theory is widely used to cal-
culate physical properties of solids, ranging from elec-
tronic structure to optical and x-ray response [1]. Within
single particle theory, which is usually an adequate ap-
proximation, these physical properties can all be calcu-
lated in terms of the total one electron propagator or
Green’s function G = 1/(E − H + iΓ), where H is the
Hamiltonian and Γ accounts for inelastic losses and life-
time effects. In this paper we focus on the real space
version of MS theory, i.e., the real space Green’s function
(RSGF) approach[1]. This approach has several advan-
tages over traditional electronic structure methods, espe-
cially for complex systems. First, a real space approach is
not restricted to periodic materials, and second, the ap-
proach can be extended to energies far (e.g., up to about
2000 eV) above the Fermi level. Moreover, a real space
approach is essential for processes like x-ray absorption in
which a symmetry breaking effects like the core-hole and
inelastic losses (e.g., the photoelectron mean free path
damping), must be taken into account even in perfect
crystals.

The central quantity in RSGF calculations is the ma-
trix form of the propagator GL′R′,LR(E) in a site R and
angular momentum L = (l, m) representation |LR〉 =

i`j`(krR)Y`m(r̂R), where ~rR = ~r − ~R and L = (`, m).
The matrix elements represent the amplitude for an elec-
tron to propagate between the states |LR〉 and |L′R′〉.
This matrix satisfies the multiple-scattering equations[2]
for a cluster with NR sites,

G = Gc + Gsc

Gsc = eiδ [1−G0T]−1G0eiδ′

, (1)

where for simplicity here and elsewhere (unless other-
wise specified), matrix indices are suppressed. In these
equations Gc represents the central atom contribution,

for which (−1/π) ImGc = δLL′δR,R′ and Gsc is the scat-
tering part from the surroundings. Thus the main in-
gredients in the calculations are the damped free prop-
agators G0

LR,L′R′(E), and the dimensionless scattering
t-matrix T = tlR δR,R′δL,L′ which incorporates the scat-
tering potentials in terms of tlR = eiδlR sin δlR, where δlR

are partial wave phase shifts for site R. In this formula-
tion, multiple scattering is implicitly taken to all orders
via matrix inversion. The multiple scattering series for
Gsc is obtained by expansion of the matrix inverse in a
geometric series,

Gsc = eiδ′

[G0TG0 + G0TG0TG0 + · · ·]eiδ . (2)

This expression give a separation of total Green’s func-
tion into contributions from individual scattering paths,
and is hence is termed the multiple scattering (MS) or
path expansion. The complete expression in Eq. (1) is
also termed full multiple scattering (FMS), since it is
formally equivalent to a sum over all MS paths within a
chosen finite cluster through which an electron can prop-
agate, starting from and returning to the central atom[3].

Once the propagator G is obtained using either Eq. (1)
or Eq. (2), many physical quantities can be calculated.
For example, the contribution to the x-ray absorption
spectra (XAS) from a given site and final state angular
momentum L (with a relaxed core hole), as given by the
“Golden rule,” can be written as

µ(E) ∝ −
1

π
Im

∑

L,L′

M∗
L′(E)GL′0,L0(E)ML(E), (3)

where ML(E) = 〈L, 0|ε̂ ·~r |c〉 is a transition dipole matrix
element between the atomic core state and a local final
state |L, 0〉 and ε̂ is the x-ray polarization. As the tran-
sition matrix elements are relatively smooth functions of
energy, the fine structure in µ(E) arises predominantly
from that in the total propagator G.

2

Remarkably the multiple scattering expansion (Eq. 2)
generally converges well for photoelectron energies above
about 30 eV, where typically less than about 100 MS
paths account for the x-ray absorption spectra (XAS).
This simplification justifies the traditional path-by-path
EXAFS (extended x-ray absorption fine structure) anal-
ysis. On the other hand, below about 30 eV, scattering is
often much stronger, and there may even be eigenvalues
of the G0T matrix that are larger than unity, in which
case the MS expansion Eq. (2) fails to converge. For these
reasons, XAS calculations are often split into two regions,
based on the strength of photoelectron scattering: the
EXAFS region above about 30 eV based on Eq. (2), and
the XANES (x-ray absorption near edge structure) re-
gion below about 30 eV based on Eq. (1). XANES cal-
culations probe low energy excited states and are thus
important to determine electronic and chemical informa-
tion from x-ray spectra (e.g, charge counts, spin and or-
bital momenta). However, the cross-over between these
regimes is ill-defined, and heretofore, has lacked a quan-
titative distinction. In this work, we discuss iterative
MS methods based primarily on Lanczos algorithms[4],
which naturally interpolate between the full and finite
MS limits. Our results below clarify how the MS expan-
sion converges with respect to energy and when a path
expansion is valid, thus providing a clear way to differ-
entiate the extended and near edge regimes.

Many other spectroscopies can be obtained with a sim-
ilar RSGF formalism. For example, calculations of x-ray

photoelectron spectroscopy (XPS) cross-section σ(~k) and
of photoelectron diffraction (XPD) can be obtained from
G using the expression[3],

σ(~k) ∝
∑

LR

∣

∣[YL(k̂)δR,R′ +

∑

L′R′

YL′(k̂)e−i~k·(~R′−~R)Gsc
L′R′,LR(Ek)]eiδ`,RMLR

∣

∣

2
,(4)

where ~k is the outgoing photoelectron momentum. Cal-
culations of Eq. (4) thus require knowledge of the site
off-diagonal matrix elements of GL′R′,LR. Note that once
these matrix elements are determined, one can deter-

mine σ(~k) for any direction, i.e., the ARPES (angular
resolved photoemission spectra). LEED (low energy elec-

tron diffraction) spectra can also be obtained from σ(~k)
and the surface structure factor[5].

There is also a direct connection between G and elec-
tronic structure. For example, the angular momentum
projected density of electron states or LDOS ρl,R at a
given site requires similar calculations, i.e.,

ρl,R(E) = −
1

π
Im Trm GLR,LR(E). (5)

Similarly, local electron densities and charge counts can
also be obtained from G.

Due to the core-hole lifetime and final state broaden-
ing, the effective one-particle Hamiltonian H is not Her-
mitian, and the free propagators decay with distance,

i.e., G0
L′R′;LR(E) ∝ exp[(ik − 1/λk)|R − R′|]/|R − R′|,

where k = (2E)1/2 is the electron wave number, and λk

is an effective energy dependent electron mean-free path
that includes lifetime broadening. The effective mean
free path can be quite large near the Fermi level, but
is still finite at threshold due to the core-hole lifetime.
Thus the size of a cluster needed for an accurate solution
to the MS equations for G is roughly comparable to the
mean free path λk, which varies between about 5 and 20
Å for all materials.

The high energy or extended regime is important in
several x-ray and electron spectroscopies such as EX-
AFS, XPS, XPD, and anomalous x-ray scattering (AXS).
These spectroscopic methods typically make use of the
energy or angular dependent modulations in photoelec-
tron scattering to extract local electronic and structural
information. Due to developments in curved-wave scat-
tering theory, e.g. the separable representation for the
free propagators [3], EXAFS and XPD calculations are
now highly efficient. Moreover, during the last years,
computing power has increased dramatically, following
Moore’s law[6], so that now such calculations using the
MS expansion in Eq. (2) are fast, accurate and readily
executed on inexpensive desktop computers. As a result
such calculations have become routine in EXAFS data
analysis to determine accurate geometrical information
about the local structure of materials.

On the other hand, XANES calculations have re-
mained time consuming for many materials. The FMS
calculations via Eq. (1) require repeated inversions of
large, complex and only semi-sparse matrices. For exam-
ple, XANES calculations at the K edge of Si (which has
a long mean free path) require atomic clusters of about
NR = 103 atomic sites with s, p and d electrons (lmax =
2), i.e., a basis of dimension NR(lmax+1)2 ≈ 9×103. As a
result, such a calculation up to about 30 eV above thresh-
old using Eq. (1) requires inversions of 9NR × 9NR such
matrices at about 100 energy points. These calculations
typically scale as the cube of the matrix dimension, so the
above example has heretofore taken several days on mod-
ern computers. Higher Z materials (e.g., transition met-
als) may also require f electrons (or higher shells), but
tend to have shorter core-hole lifetimes, and hence com-
parable matrix dimensions. XANES calculations also de-
mand a more sophisticated treatment of electronic struc-
ture than EXAFS. For example, self-consistent poten-
tials, an accurate treatment of lifetime effects and inelas-
tic losses are needed to obtain quantitative results. Fur-
ther improvements in computer codes for XANES, such
as relaxation of the muffin-tin approximation (i.e., the
use of non-spherical potentials) and better treatments
of many-body effects[7] will likely improve accuracy, but
further increase computational time. These computa-
tional demands have led us to investigate ways to speed
up the the calculations.

In this paper, we present two strategies for achieving
much faster near edge RSGF calculations for electronic
structure and x-ray spectra. The first is to use iter-

3

ative MS algorithms that replace conventional matrix-
inversion methods. In particular we make use of recent
developments in Lanczos-type algorithms for solving sys-
tems of linear equations[8]. These methods are also more
efficient than the conventional continued-fraction Lanc-
zos approach, which usually gives only a single inverse
matrix element. The second strategy is to use paral-
lel processing, i.e., by distributing different parts of the
calculation across multiple processors based on the MPI
protocol[9]. These techniques may be applied simulta-
neously, and we demonstrate that improvements in com-
putational time for typical XANES calculations of about
two orders of magnitude are possible with Lanczos MS al-
gorithms on parallel computers. These approaches have
been implemented in a generalization of the ab initio

XAS/electronic structure code FEFF8 (version 8.2)[10].
These developments thus largely overcome the time bot-
tleneck of XANES calculations in complex materials and
nano-scale systems with up to about 103 atoms.

The remainder of this paper is outlined as follows: In
Sec. II., we discuss the fast Lanczos algorithms for solv-
ing the MS equations, and in Sec. III, the MPI parallel
processing approach. Sec IV. contains a summary and
conclusions. Technical details are presented in an Ap-
pendix.

II. ITERATIVE MS ALGORITHMS

A. Lanczos type methods

In 1950 Lanczos[4] discovered a powerful three term re-
cursion operation which transforms an arbitrary complex
matrix A to symmetric, tridiagonal form [Eq. (A1) of the
Appendix]. Many efficient ways to solve sparse systems of
linear equations are based on this transformation. These
are referred to as Lanczos-type methods, and have been
reviewed by Gutknecht[8]. They include various versions
of the biconjugate gradient (BiCG) method, the general-
ized minimum residual (GMRES) method, etc. Recently,
additional steps have been made to improve or overcome
various problems with these Lanczos procedures[11, 12].

In condensed matter physics, the Lanczos recursion
method was extensively developed by Haydock et al., es-
pecially for applications to tight-binding electronic struc-
ture calculations[13]. In their approach Haydock et al.
usually use a continued-fraction representation which
gives a single element of the inverse matrix A−1

11 . The
continued-fraction recursion method was also applied to
K-shell XANES calculations by Filipponi[14]. A great
advantage of the Lanczos/continued-fraction representa-
tion is its lack of sensitivity to large eigenvalues of the
matrix A. The reason seems to be that the procedure
systematically incorporates all large eigenvalues into the
solution. Indeed, the calculations of Filipponi[14] showed
that this representation does not have such eigenvalue
sensitivity, even when several eigenvalues are significantly
larger than unity. In contrast, many other Lanczos algo-

rithms are less stable. We found that some versions of
the biconjugate gradient method need pre-conditioning
when some eigenvalues are greater than unity and others
failed to converge for the large Si calculations discussed
below. The continued fraction representation has other
advantages as well; for example, the spectral distribution
after n steps correctly gives the first n moments of the
distribution[13].

A limitation of the continued fraction method is that
it only gives a single element of the inverse matrix, while
for general x-ray spectroscopy calculations, e.g. XPS and
XPD several or many elements of the inverse matrix A−1

are needed. Such calculations can be reduced to solving a
few systems of linear equations of the generic type[11, 12],

A|x〉 = |b〉, (6)

where A = 1 − G0T , and |b〉 has a single non-zero j-
th component, e.g., bi = δi,j the original basis. This is
the approach adopted in this work. In this method, the
vector |x〉 is then the j-th column of the desired inverse
matrix A−1 with components A−1

ji , as can be verified by

direct substitution. Recently, de Abajo et al.[5] devel-
oped an alternative Lanczos algorithm for such calcula-
tions. Their approach calculates various inverse matrix
elements recursively, in terms of the leading moments of
the matrix B = G0T obtained during the Lanczos pro-
cedure.

There have been many other attempts to speed up MS
calculations. Early approaches were based, for example,
on reordering the MS series[15], but these methods ap-
pear to have only mixed success. Wu and Tong[16] in-
troduced an iterative solution to the matrix inverse, with
|x〉 = (1+B+B2+ · · ·)|b〉 and suggested a simple mixing
scheme of new and previous iterations to stabilize the ap-
proach for photoelectron diffraction. However, such a so-
lution may not converge when the matrix B has eigenval-
ues larger than unity, which is often the case in XANES.
Another promising method is based on repartitioning the
matrix B to improve convergence.[17] This method splits
the problem into regions with stronger and weaker scat-
tering with different treatments appropriate to each re-
gion. Like the path expansion, this approach has the
advantage of having a clear physical interpretation of the
various MS contributions and can also treat strong scat-
tering. However, it appears to be less amenable to au-
tomation than the Lanczos approach.

B. Lanczos/LU Method

As noted above, a knowledge of the complete inverse
matrix [1−G0T]−1 is not required for all MS applications,
nor is a single element sufficient. To address this problem
we introduce here a combined Lanczos/LU method which
generalizes the continued fraction approach to multiple
A|x〉 = |b〉 problems. This approach differs from all those
discussed above in that we employ the Lanczos proce-
dure directly to calculate an entire column of the inverse

4

matrix. In our approach, the Lanczos tridiagonalization
is followed by the LU (i.e., lower-upper) decomposition
procedure in the transposed biorthonormal Lanczos vec-
tor space. Details are given in the Appendix. After n
steps of the Lanczos process the method yields an itera-
tive solution |xn〉 to |x〉 with components xi = A−1

i1 (for
the choice |1〉 = |b〉). The value of the first component x1

agrees with the n-tier continued fraction result for A−1
11 at

each iteration. The method is computationally efficient,
since the time required to obtain the entire column of
the inverse matrix is the same as that for the continued-
fraction estimate of a single element A−1

11 . Moreover, it
appears to be more direct than the recursion/moment
procedure of de Abajo et al.[5]

In our applications the matrix/vector indices i of the
original basis label the combined atomic sites R and an-
gular momenta states L = (l, m), i.e., |i〉 ≡ |LR〉, and
should not be confused with the Lanczos basis states |n〉
labeled by integers n. The vector |b〉 is chosen to define
a particular seed state for the Lanczos procedure, e.g., to
obtain a particular projected density of states on some
site, or (e.g., through the dipole selection rules) a partic-
ular channel of the x-ray absorption process. For exam-
ple, for the sDOS on the central atom, |b〉 = |(0, 0)0〉, and
only one component of |x〉 needs to be calculated for that
|b〉. For an unoriented powder sample or a cubic system
at the K absorption edge, (a common case of experimen-
tal interest) one can calculate the polarization-averaged
absorption within the dipole approximation for an initial
s-state, using at most three columns of the inverse matrix
for three orthogonal vectors |b〉 corresponding to polar-
ization components ` = 1 and m = 0,±1 at the central
site.

All iterative methods that solve the A|x〉 = |b〉 prob-
lem have the potential to give faster calculations for large
clusters than usual LU algorithm for the inverse, apart
from some additional calculational overhead. Thus the
exact LU matrix inversion algorithm can perform bet-
ter only for small N or non-sparse matrices. An exact
LU solution of a system of linear equations with Lanc-
zos methods is also formally a O(N 3) operation process,
and hence comparable in complexity (although slower in
practice) than the exact LU algorithm. However, if a sys-
tem is sparse, i.e., there are a number of nonzero elements
Nz in the matrix A, the total number of operations will
scale only as O(NzN). Thus if (Nz � N2), the Lanc-
zos approach will be faster than LU, even for an exact
solution. Thus due to the mean free path, one expects
for large clusters that Nz ∝ N , i.e. direct propagation
only within a cluster of radius a few λk is important. Yet
another advantage of Lanczos methods is that they tend
to reduce the residual error |rn〉 in the inverse matrix
elements with increasing n, where

|rn〉 = |b〉 −A|xn〉. (7)

It is natural to terminate the procedure once the residual
becomes smaller than a given tolerance. Thus one gen-
erally reaches a desired precision with a number of itera-

tions Nit < N , leading to O(NzNit) scaling and superior
convergence properties. In the case of the MS expansion,
this number (Nit) corresponds to the maximum order of
the expansion needed for convergence.

C. Sample Applications

Below, we compare the speed of various iterative Lanc-
zos methods against the conventional LU method of ma-
trix inversion.[19] We have used the calculation of the
K edge XAS of Si as a key test case to evaluate the ef-
fectiveness of these various alternatives. Real space MS
XANES calculations of low Z materials like Si are of-
ten notoriously ill-convergent, and heretofore, have not
yielded good agreement with experiment. This is due
to their open structure, strong scattering, and very long
photoelectron mean free paths (i.e., long core-hole life-
time) at threshold for low Z absorbers. Non-spherical
potential corrections can also be important within a few
eV of threshold, where they can strongly affect scattering
properties. Thus these are cases that could benefit from
improvements to the N3 scaling of the LU algorithm. In-
deed, we find that a reasonable agreement with XANES
experiment for Si can be obtained only for clusters of
about 103 atoms.

We have implemented several Lanczos-type algorithms
for the inversion of the matrix A = 1 − G0T . (see Ap-
pendix) in the FEFF8 code,[2] in an effort to determine
the optimal choices for the RSGF approach to electronic
structure and x-ray spectra. These include our Lanc-
zos/LU approach, which is similar to the biconjugate
Lanczos approach (i.e., BiCG or Lanczos/Orthodir), and
a stabilized version due to Van der Vorst (BiCGStab).[11]

As noted above, the matrix G0T is short ranged due
to the finite mean free path, and hence is semi-sparse.
The presence of inelastic losses also implies that G0 is
not Hermitian, and hence the usual Lanczos and contin-
uum fraction algorithms for Hermitian matrices must e
generalized. Thus to reduce the computation time, ma-
trix elements of G0T are set to zero once they become
smaller than some tolerance t1 times the largest matrix
element for a given energy. This effectively reduces the
number of nonzero matrix elements Nz. We also stop
the calculation, once all components of the residual be-
come less than a second tolerance (t2) for unit vector |b〉,
which can be used to reduce the number of iteration Nit.
Typically we set t1 = t2 ≈ 0.001. We found that this
is a more appropriate criterion for convergence than the
norm of the residual, since the size of the matrix 1−G0T
changes with cluster size.

For initial tests, we carried out XAS calculations at the
Si K edge using a 191 atom cluster, and compared with
the computation time for LU matrix inversions (taken
to be 100% in the following comparisons). The LU de-
composition algorithm[19] was originally used by default
in the FEFF8 code, since it is one of the fastest gen-
eral algorithms for exact matrix inversion. Our Lanc-

5

zos/LU version of BiCG took only 57% of the time to
reach convergence within the linewidth of the LU cal-
culations (t2 = 0.001). Only the BiCGStab[11] algo-
rithm was found to converge faster (38% of LU time),
while the Lanczos/Orthodir[12] was slightly slower. This
was expected due to its the similarity with our method.
However, BiCGStab appeared to lose stability for some
very large clusters (see below). Surprisingly, several al-
gorithms which were expected[8] to perform as well or
better than BiGCStab did not work well for our appli-
cations. Possibly this is because our matrix A is both
non-Hermitian and not very sparse. For example, the so-
called TFQMR approach achieved convergence in 64% of
LU time, while BiCGStab2[8] was even slower than LU.
Moreover, the GMRES version of BiCG[19] was about
two times slower than LU and sometimes failed to con-
verge for larger clusters.

As a result of these trials, all of our sample calcu-
lations reported below for bigger Si clusters were per-
formed with the BiCGStab or our Lanczos/LU methods,
and the results are summarized in Table 1. For a 381
Si atom cluster these were faster than LU by factors of
4.9 and 3.0, respectively. For 597 atoms, BiCGStab out-
performed LU by a factor of 5.5. Results for the Si K
XAS from the largest of our calculations are shown in
Fig. 1, and compared with of two different sets of high
quality experimental data, both of which were collected
using total electron yield detection at normal incidence
and room temperature.[20, 21] The similarity of these
data sets shows that the discrepancy between theory and
experiment in the near edge region is likely due to lim-
itations of the one-electron theory, spherical muffin-tin
potentials, and electron gas self energy used in our treat-
ment, and not the MS expansion or limited cluster size.
Although part of the discrepancy is due to experimental
resolution, no additional broadening, Debye-Waller fac-
tors, or edge shifts were included in our XANES calcula-
tions. Also shown in Fig. 1 beyond 1855 eV is the EX-
AFS, as calculated with the path expansion, again with-
out Debye Waller factors (which would slightly decrease
the EXAFS amplitude); these calculations demonstrate
that the MS expansion converges well beyond about 1875
eV. Note that the position of the small peak near 1846
eV shifts significantly with cluster-size between 597 to
849 atoms. This demonstrates that 600 atom clusters
generally sufficient for convergence of the MS expansion
for Si but that clusters of 1000 or more are needed at
some energies. The calculations for 597 atoms are very
time consuming, requiring about 21 hours on a single pro-
cessor SGI with a 200 MHz R10K processor, and about
6 hours on a dual Alpha EV-6 processor machine with
our parallel MPI implementation (see Table 1). The cal-
culations for 849 atoms with BiCGStab exhibited con-
vergence problems for several energy points, and were
slower than those with Lanczos/LU method which did
not show any signs of such instabilities. The calculations
in Fig. 1 for 849 atoms were done on the NERSC IBM
SP supercomputer with 32 processors, and took only 1.86

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1840 1850 1860 1870 1880 1890 1900 1910 1920

A
bs

or
pt

io
n

(a
rb

. u
ni

ts
)

E(eV)

FIG. 1: Lanczos/LU XANES calculations for the Si K edge of
597 (solid) and 849 (short dashes) atom clusters, compared to
room temperature experimental data (dash-dot [20] and dots
[21]); also shown beyond 1855 eV is the Si K edge EXAFS cal-
culated with the path expansion (long dashes). No additional
broadening, Debye Waller factors or edge shifts were included
in the XANES calculations. The calculations for the 849 atom
cluster were done using 32 processors of the NERSC IBM SP
machine with the Lanczos/LU method, while the BiCGStab
method failed to converge.

wallclock hours; according to Table 1 one would expect a
calculation time of order 54 hours on a 250 MHz SGI Oc-
tane workstation. The scaling of computation time both
for BiCGStab and Lanczos/LU methods varies approx-
imately as N2.5 in this limited cluster size range. The
reason is that the number of nonzero matrix elements
Nz in G0T still scales roughly as N2 due to big mean
free path in Si, and the time savings are due to the fact
that Nit scales as N0.5. Eventually, i.e., for thousands
of atoms in the cluster, one would expect the number of
non-zero elements in G0T to scale linearly with N , since
distant pairs of atoms would not contribute, and for the
same reason the Nit should eventually saturate. How-
ever, for Si even with almost a thousand atoms we did
not reach this limit.

In Fig. 2. we plot the number of matrix-vector mul-
tiplications Nit required for the BiCGStab method to
converge to a tolerance t2 for each energy point. This
number has a physical interpretation as the maximum
order of MS expansion necessary to reach convergence.
For Si, one sees that Nit is of about 100 at threshold
(1838 eV), but drops rather quickly to about 50 at 15
eV and then to 12 or less about 35 eV above the edge
for the chosen tolerance t2 = 0.001. By inspection of
the EXAFS calculations in Fig. 1, these values of Nit

may be overestimates, since the EXAFS appears to be
reasonably converged beyond about 35 eV of threshold.

6

0

20

40

60

80

100

120

140

1840 1850 1860 1870 1880 1890 1900 1910 1920

N
um

be
r

of
 it

er
at

io
ns

E(eV)

FIG. 2: Number of iterations Nit needed for convergence of
the Lanczos/LU algorithm vs energy for the 597 atom Si K
edge XANES calculations. This number corresponds to the
maximum order of the MS expansion needed for convergence.
Note the approximate cross-over at about 1870 eV between
XANES (where very high order MS is needed) and EXAFS
(where a relatively low order MS path expansion suffices).
This is consistent with Fig. (1).

Interestingly, the variation of Nit with energy appears to
be correlated with the magnitude of the fine structure,
which is a measure of overall scattering strength. Thus
it is largest near threshold, becomes small at sufficiently
high energy, and exhibits a “fine structure” of its own.
Hence this result clearly shows how the full MS expansion
applied to Si crosses over to the high-order MS expansion
about 35 eV above threshold, consistent with the results
shown in Fig. 1. For comparison, we checked that for
fcc Cu metal, the maximum number of iterations is at
most 8 throughout the XANES, showing that the high
order path expansion for Cu is always valid. This was
not completely unexpected, since it has been verified nu-
merically that the MS expansion converges for Cu[3], but
it is also known that some eigenvalues of G0T for Cu ex-
ceed unity near threshold[22]. Of course, the maximum
MS order can also depend on cluster size, but this value
is expected to tend to a limit for clusters larger than a
cutoff of order the mean free path. For example, if Nit

becomes less than 10 above a certain energy, one expects
that the MS path expansion will converge well beyond
that energy.

III. PARALLEL PROCESSING

A. MPI Parallel Calculations of XANES

As discussed in the introduction, a series of similar MS
calculations must be done at a large number (typically of
order 102) of energy points to obtain a complete XANES
spectrum. This number is determined by the natural en-
ergy resolution (due to lifetime broadening and inelastic
losses) and the range of the XANES region (typically be-
low 30 eV of threshold) for which full MS calculations
are needed. Thus it is reasonable to consider doing these
similar MS calculations in parallel.

Parallel algorithms generally depend on specifying in-
dependent tasks that can be executed simultaneously by
different processors, and can be implemented in several
ways: (1) using the natural parallelism intrinsic to in-
dependent physical processes; (2) using independent re-
peated elementary mathematical operations; and (3) us-
ing independent computational tasks, such as rewriting
matrix inversion routines to execute in parallel on a set
of processors. The first approach is particularly advan-
tageous when it can be applied. Since we aim to model
the physical process of x-ray absorption, it is natural to
exploit the intrinsic task-parallelism (or physical paral-
lelism) in this problem, namely that the x-ray absorption
at a given x-ray energy is independent of the absorption
at other energies, assuming they are separated by the in-
herent energy resolution (typically a fraction of an eV).
Thus a natural way to parallelize the full spectral calcu-
lation is simply to distribute the energy points among an
available set of processors. We can then assemble the re-
sults to obtain the full absorption spectrum. The second
approach listed above is hardware specific, and exploits
the characteristics of particular processors (e.g., vector
processors such as Altivec in PowerPC G4 processor or
MMX in Intel processors). The third approach can also
be fruitful in special applications, but can require sub-
stantial revisions to existing code and/or large amounts
of communication time between processors. We do not
address methods (2) and (3) further here, primarily be-
cause they require demanding recoding, and tend to be
machine specific and hence not portable.

Thus in this work we exploit only the natural paral-
lelism in XAS. To this end we have used the Message
Passing Interface (MPI) protocol[9] MPI is now a stan-
dard library for implementing parallel processing, and is
used with FORTRAN, C, or C++ and standard TCP/IP
ethernet communications. It leads to a fast, portable
system for parallel processing of problems with intrinsic
parallelism.

With MPI, we have developed a parallel version of the
ab initio full MS XANES code FEFF8[2], based on the
RSGF approach as briefly described in the Introduction.
This parallel code (here dubbed FEFFMPI) compiles and
runs without changes on all currently available operating
systems tried to date (e.g., Linux, Windows NT, IBM-
AIX, SGI, CRAY). To realize such a parallel pro-

7

cessing code, we began with the recent single-processor
version of FEFF8 (version 8.10). FEFF8 is written in
portable FORTRAN77, and uses a number of computa-
tional strategies for efficient calculations. Our goal is to
implement a parallel processing version that retained all
the advantages and portability of the the single-processor
version while gaining a significant improvement in speed
on parallel machines. We also wanted a single code base,
so improvements such as the Lanczos algorithms could
also be incorporated without significant change. The
resultant code FEFFMPI runs on any parallel process-
ing cluster or multiple-cpu machine that supports MPI.
Moreover, such systems need not be homogeneous and
can use distributed or shared memory (or even a mix-
ture).

The starting point for “parallelizing” any code is to de-
termine which parts of the calculation are the most time
consuming. Profiling tests showed that three small sec-
tions of the 33,000 line FEFF8 code dominated the com-
putational time: the calculation of self consistent poten-
tials (SCF) the optional calculation of the local density
of electronic states (LDOS), and the XANES calculation
itself. All of these sections involve repeated full MS cal-
culations, and altogether these steps account for about
97-98% of the total runtime in typical calculations. Al-
tering these calculations to run in parallel is straightfor-
ward with MPI, because each step involves similar cal-
culations and utilizes identical matrix inversion routines.
Thus the main computational bottleneck in FEFF8.1 is
the LU matrix inversion algorithm used in solving the
MS problem.

By concentrating on a few “hot spots” in the code,
we left most (over 99.5%) of the original single-processor
code unchanged. FEFF8 reads a single plain-text free-
formatted input file (feff.inp), which contains the
atomic positions and atomic numbers defining the sys-
tem as well as other relevant input data. We retained
the same input file in FEFFMPI by running the parallel
code from a single cross-mounted directory on a single
executive node. Thus, all read and write statements go
to the executive node on the MPI cluster containing Np

processors. The parts of the code that still run sequen-
tially are still executed by all nodes simultaneously. This
results in a small amount (typically a few percent) of
redundant calculation, but no reduction in overall wall
clock runtime. When the subroutine that executes a
FMS calculation is reached, the MPI libraries are used to
designate some cluster node as the executive node, and
the remaining Np − 1 nodes as workers. Each worker is
assigned a unique integer identification number or MPI
“rank.” In the cyclic loop over the Ne x-ray energies (la-
beled by the points ie in the SCF, LDOS and XANES
calculations, each node (executive or worker) executes a
fraction ≈ 1/Np of the FMS calculations, at the energy
points rank, rank + Np, rank + 2Np That is, the
main loop seen by each processor has the behavior:

Do ie = rank, Ne, Np . (8)

After each processor completes its part of the task, the
results are sent back to the executive (e.g., by ethernet
communication). This approach has the following prop-
erties: (1) exactly the same executable code is run on
every node in the cluster, because the only distinction
made between processors is the processor rank; (2) all of
the changes to the single-processor FEFF8 are confined
within a few subroutines; (3) the FEFFMPI version of
the code is virtually identical to the single-processor ver-
sion of FEFF8; and (4) communication between execu-
tive and worker processors is kept to a minimum. Thus
the only fundamental difference is that each clone of the
FEFFMPI process is aware (by virtue of its rank) that
it is on different node of a MPI cluster of Np processors.
With this code structure, we succeeded in using a single
code-base for both the single processor and MPI versions
of FEFF8. For the single-processor version, this required
the substitution of dummy MPI libraries into the original
code.

Only one section of the original FEFF8 code had to
be rewritten in our MPI implementation. Since this il-
lustrates a common problem in implementing task paral-
lelism, it is worth a brief comment. As noted above the
key to implementing task parallel calculations is that the
tasks must be independent of one another. However, in
the original FEFF8 algorithm for self-consistent poten-
tials, a “smart search” procedure was used to determine
the Fermi level. Such a search cannot be run in paral-
lel because it is an iterative algorithm, with successive
steps depending on previous ones. To make the SCF cal-
culation run in parallel, we had to replace the iterative
search with a grid search method. Although the resul-
tant algorithm is somewhat slower on single processors
(i.e., by a factor of about 1.6), it can be task-parallelized
and yields excellent scaling of the calculation speed with
cluster size. This algorithm change amounted to only
about 100 lines of new coding (out of 33,000).

B. Parallelization with Fast Lanczos Algorithms

It is straightforward to replace the default LU algo-
rithm for inverting the multiple-scattering matrix 1 −
G0T with the fast Lanczos algorithms investigated in
this work. However, since fewer Lanczos iterations are
needed at high energies, this led to a situation in which
different execution times were needed by the various pro-
cessors. Ideally, for the parallel execution, one wants to
spread jobs evenly between processors or ’load-level’ the
calculation. To compensate for this load imbalance, we
assigned each processor a widely spaced fraction of the
energies, designed to cover the total spectral range, as in
the cyclic loop in Eq. (8).

8

C. Scaling with Cluster Size

To evaluate how well the parallel algorithm succeeds
in FEFFMPI, we first conducted tests of XANES and
LDOS calculations for an 87 atom GaN system on six
modern computer systems. As representative single-
processor systems, we used a 450 MHz AMD K6-3 run-
ning SuSE Linux 6.1, and a 450 MHz Apple PowerMac
G4 running OS 9. For the MPI clusters we used: (1)
a cluster of 48 Pentium II 500 MHz systems running
Redhat Linux; (2) a similar cluster of 400 MHz Pentium
III machines running Windows NT; (3) a cluster of SGI
R12K machines running IRIX 6.5; and (4) a 16 processor
IBM SP3 running AIX. All of these systems were con-
nected via 100 Mb ethernet. In these tests, the fastest
clusters completed the total calculation about 50 times
faster than the single processor Linux system. However,
despite the disparate nature of these machines, we found
that the relative processing speed could be fit to a simple
scaling law as function of MPI cluster size, given by

T = T0[0.03 + 0.97/Np], (9)

where T is the net runtime, T0 is a constant which rep-
resents the speed of a given processor type and the effi-
ciency of the compiler, and Np is the number of proces-
sors in the MPI cluster, as shown in Fig. 3.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

FeffMPI Scaling with Cluster Size

N
or

m
al

iz
ed

 t
im

e
re

la
tiv

e
to

 s
in

gl
e

pr
oc

es
so

r

Inverse number of nodes in cluster

FIG. 3: FEFF8MPI total runtime scaling vs cluster size for
LINUX, SGI, Windows NT, and IBM SP2 clusters. Once
the calculation times are rescaled by a factor T0 to account
for single processor speed (see text), the FEFFMPI scaling
is independent of processor and cluster. This scaling can be
used to predict the speedup of FEFF8 on any MPI cluster,
relative to a single processor in that cluster.

Once the single processor execution time T0 is deter-

mined, the speed of every MPI cluster scales almost iden-
tically. As cluster size is increased, the part of the code
that runs in parallel changes from the dominant part of
the runtime, to a small or insignificant fraction of the
total. In the limit of large MPI clusters, the runtime is
then dominated by the 3% of the original runtime which
at present still executes sequentially. Thus in extremely
large clusters, we would expect no further increase in
speed because the runtime is totally dominated by se-
quentially executing code, and large clusters can even
increase the runtime due to communications overhead.

D. Sample Applications of FEFMPI

In this section we give some examples of how the fast
turnaround of XANES calculations using FEFFMPI can
be used to advantage. For this sample application, we
have chosen a simulation of the changes in XANES in
thin films of BaTiO3 as a function of deposition condi-
tions. In these materials, BaTiO3 films are deposited
on silicon or MgO substrates that are held at relatively
low temperatures. Because of the low substrate temper-
atures and incomplete control of the deposition process,
the actual structure of the films departs from that of ideal
BaTiO3 in unknown ways. In an attempt to determine
the structure, we first used FEFFMPI to calculate the
XANES for a series of possible trial structures and then
used these structures as a starting point for fitting the
EXAFS. The input to FEFFMPI is a cluster of 119 atoms
around a central Ti atom, which includes full occupancy
of all atomic sites in the BaTiO3 structure to a distance
of 7 Å from the central Ti atom. Our original hypothesis
about the film structure was that there is a variation in
the oxygen coordination around the Ti atom, and that
the films contained regions of 4-, 5-, and 6-fold oxygen
coordination. This hypothesis was motivated by the ob-
served energy position and peak size shifts of the small
“pre-edge peak” at the Ti K absorption edge in previous
studies of various Ti-O compounds[18]. However, the
BaTiO3 films showed a much smaller peak size change
than is found in empirical standards, as the Ti-O ge-
ometry changes from tetrahedral to square-pyramidal to
octahedral. Using FEFFMPI we had fast (≈ 20 minute)
turnaround on full MS XANES calculations, and were
able to try out many different structural models. X-ray
fluorescence (XRF) measurements showed that many of
the films departed significantly from the ideal 1:1 Ba-Ti
stoichiometry of BaTiO3, so we eventually tried mod-
els that preserved the BaTiO3 structure but included
randomly distributed Ba vacancies in amounts consis-
tent with the XRF. Fig. 4. shows the experimental data
from the BaTiO3 films and the XANES calculated from
a model that assumes an intact BaTiO3 structure with
full octahedral O coordination about the Ti atoms, but
with an increasing number of Ba vacancies.

Clearly there is good qualitative agreement between
the simulation series and the data. From this starting

9

point, we were able to model the EXAFS data and then
determine that the film structural variation is clearly due
to Ba vacancies around octahedral Ti-O structural units.
Details of this analysis will be given elsewhere.

1.5

1.0

0.5

0.0

X
-r

a
y

a
b

so
rp

tio
n

 (
A

rb
.

U
n

its
)

-20 -10 0 10 20
Energy relative to absorption edge (ev)

(A) (B)

(C)

2.0

1.5

1.0

0.5

X
-r

a
y

a
b

so
rp

tio
n

 (
A

rb
.

U
n

its
)

-20 -10 0 10 20

(A)

(B)

(C)

(a)

(b)

FIG. 4: Ti K edge XANES of (a) four FEFFMPI calculations
of the BaTiO3 structure, assuming full Ba occupancy (solid
line), 2 vacancies (dashed line), and 4 vacancies (circles and
solid line) in the Ba second shell. Note the slight movement
of the pre-edge peak (A) to lower energy, change in the in-
flection point (B) and decrease in peak (C); (b) experimental
data from BaTiO3 films deposited at various substrate tem-
peratures and with varying Ba:Ti ratios. XANES from these
Ba-deficient samples show similar trends in the three feature
changes seen in the FEFFMPI calculations.

IV. CONCLUSIONS AND FUTURE
PROSPECTS

We have demonstrated how parallel processing using
the MPI protocol, combined with modern Lanczos type
MS algorithms can speed up real-space XANES and elec-
tronic structure calculations by about two orders of mag-
nitude. Similar techniques can be applied to many other
spectroscopies. Our Lanczos/LU algorithm is both effi-
cient and stable. It is an improvement on other Lanczos
approaches in electronic structure calculations such as
the continued fraction representation, in that it yields
many elements (i.e., an entire column vector) of the ma-
trix inverse simultaneously without additional calcula-
tion. Moreover, the approach also defines a natural cross-
over energy between the applicability of full and finite MS
calculations, thus unambiguously distinguishing the near
edge and extended regimes.

These combined developments largely overcome the
computational time bottleneck of XANES calculations
in large, complex systems. In particular the MPI ap-
proach alone can yield typically a 30-fold speed increase
compared to an equivalent single processor system. The
Lanczos/LU algorithm yields an additional factor typ-
ically between 3-5. These speed-up factors are sys-
tem dependent, depending for example, on the size of
the XANES region (or equivalently the net scattering
strength), mean free path, and experimental resolution.
Thus the speed-up factor can be significantly greater
when the MS expansion converges rapidly. The parallel
processing algorithm exploits the natural or physical par-
allelism implicit in a XANES calculation and scales well
for clusters of up to about 48 processors in our GaN test.
Above that number, the execution time becomes domi-
nated by the part of the original FEFF code (presently
about 3%) which still runs sequentially.

The combination of both MPI and Lanczos algorithms
changes the overall scaling parameters of the calculation,
since a larger fraction of the total time is then taken by
unavoidable sequential part. Indeed, using both MPI and
Lanczos can sometimes totally reverse the situation that
existed with the single processor version of FEFF8. The
matrix inversion steps that previously dominated the ex-
ecution time can now become irrelevant. This occurs, for
example, at high energies (see Fig. 2), when the calcula-
tion converges in a few iterations, like the path-expansion
approach to EXAFS.

The new algorithms developed here have been incor-
porated into the ab initio FEFF8 code for calculations
of XAS and electronic structure in version 8.2. The re-
sultant FEFFMPI code is nearly as portable as the orig-
inal FEFF8 code, since MPI libraries are available for
most modern platforms. We have demonstrated an in-
verse scaling of FEFFMPI with the number of proces-
sors on several MPI cpu clusters. The code is also com-
patible with shared or distributed memory clusters, and
with combinations of both memory architectures, i.e.,
networks with shared memory machines on each node.

10

Thus the code also works with heterogeneous clusters,
although the speed in that case is limited by the slowest
processor. The present version of FEFFMPI uses only
task parallelism, by giving each processor the same frac-
tion of the energy values required for the full XANES and
LDOS calculations, and approximately the same com-
putational workload. Obviously, the scalability of this
approach ends when each processor has only one FMS
calculation to deal with; this will occur in cluster sizes of
about 100 processors for typical XANES spectra. But a
similar parallel approach could be employed to generate
the entire EXAFS spectra as well, a step that typically
requires an additional 100 energy points.

To obtain even faster XANES calculations, there are
two obvious next steps to consider. One is to examine the
FEFFMPI code for secondary hot spots. For example,
the present code does not take advantage of the consider-
able redundancy in the elements of the large matrix G0T .
Nor do we take advantage of the separation of G0 into en-
ergy independent rotation matrices (depending on bond
angles) and energy dependent radial quantities, as in the
Rehr-Albers approach. This has been used to advan-
tage in the path expansion algorithms in FEFF[3], and
also by de Abajo et al.[5] in their Lanczos algorithms[5].
These redundant calculations likely account for a large
fraction of the remaining sequential part of the calcu-
lation. Although implementing this requires recoding,
it should lead to a considerable improvement both in
execution time and in in overall storage requirements.
Another advantage of the Lanczos procedure, is that it
permits a formulation in which storage can be reduced
considerably by storing only the results of matrix-vector
multiplications at each stage, rather than the entire ma-
trix. Yet another step would be to better load-level the
parallel calculations, e.g., by assigning more of the cal-
culation to processors whose tasks finish more quickly.
In addition, the Lanczos algorithms can determine the
cross-over energy between XANES and EXAFS. With
knowledge of the cross-over energy, one can now consid-
ering automatically replacing the FMS calculations with
the more efficient path expansion beyond that energy, or
alternatively, doing parts of the path expansion with the
fast Lanczos approach. It may also be possible in the
future to bypass the Lanczos algorithm, and explicitly
parallelize the matrix inversions. We did not investigate
this latter possibility, here, since the routines available
for this purpose are not generally portable and tend to
have large communication overhead.

With the improved efficiency now in hand, it becomes
feasible to carry out XANES calculations in an entirely
different manner than heretofore possible, and many ap-

plications can now be treated which otherwise would be
impracticable. For example, a few days of calculations on
the 48 processor Linux cluster can now complete a cal-
culation that would now take a year on a current single
processor workstation. Systems such as complex miner-
als, oxide compounds and biological structures, and other
nano-scale systems are obvious targets for this type of

TABLE I: Comparison of LU matrix inversion to iterative
Lanczos type algorithms (BiCGStab and Lanczos/LU). Hours
of calculation time on SGI Octane 200 MHz workstation for
several cluster sizes NR. The scaling exponent is 3.2 for LU,
2.6 for Lanczos/LU and 2.4 for BiCGStab.

NR 99 191 381 597

LU 0.28 1.99 20.8 60.7
Lanczos/LU 0.21 1.13 7.52 20.8
BiCGStab 0.16 0.75 4.24 11.2

improved computational capability. The improved speed
should be very useful, for example, for magnetic materi-
als, which often have a large number of inequivalent sites
of the absorbing atom, requiring many separate calcula-
tions to produce a full XANES or XMCD (x-ray magnetic
circular dichroism) spectrum. In addition, FEFFMPI
should be more useful for routine applications of XAS,
since it allows users to test different models rapidly and
to examine subtle variations between models. Finally the
availability of rapid calculations now permits closed loop
fitting of XANES spectra both to physical and chemical
properties.

Acknowledgments

We acknowledge the support of C. Spangler and H.
Fang for their efforts in the development of the cluster
systems used in part of this work, and thank P. Lagarde,
A. M. Flank and A. P. Hitchcock for the experimen-
tal Si data shown here. We also thank G. de Abajo,
G. Bertsch, A. Canning, T. Fujikawa, R. Haydock, M.
Newville, B. Ravel, C. Reschke, and T. Schulthess for
useful comments. This work was supported in part by
DOE Grant DE-FG03-97ER45623 (JJR) and DE-FG03-
98ER45718 (ALA), and was facilitated by the DOE Com-
putational Materials Sciences Network. Certain commer-
cial products are identified in the article for the sake of
completeness; however, this does not constitute an en-
dorsement by the National Institute of Standards and
Technology.

[1] A. Gonis, Green Functions for Ordered and Disordered

Systems, (North Holland, Amsterdam, 1992).
[2] A. L. Ankudinov et al., Phys. Rev. B58, 7565 (1998).
[3] J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621,

(2000).
[4] C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950);

ibid. 49, 33 (1952).
[5] F. J. Garcia de Abajo, M. A. Van Hove, C. S. Fadley,

11

Phys. Rev. B 63, 075404 (2001).
[6] Gordon E. Moore, Scaling Law of Device Density, Elec-

tronics, 98, Apr. (1965).
[7] J. J. Rehr and A. L. Ankudinov, J. Synchrotron Radia-

tion 8, 61 (2001).
[8] M. H. Gutknecht, Acta Numerica 6, 271 (1997).
[9] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:

Portable Parallel Programming With The Message-

Passing Interface (MIT Press, Cambridge, 1994).
[10] For details about the code see the FEFF Project URL

http:// leonardo.phys.washington.edu/feff/.
[11] H. A. Van der Vorst, SIAM J. Sci. Statist. Comput. 13,

631 (1992).
[12] C. Brezinski, M. Redivo-Zaglia, H. Sadok, J. Comput.

Appl. Math. 123, 241 (2000).
[13] R. Haydock, Phys. Rev. B 49, 10845 (1994); Lect. Notes

Comput. Sci. 1505, 199 (1998); J. Phys. C - Solid St. 18,
2235 (1985).

[14] A. Filipponi, J. Phys.: Condens. Matter 3, 6489 (1991).
[15] D.D. Vvedensky, D.K. Saldin and J.B. Pendry, Surf. Sci.

156, 845 (1985).
[16] Huasheng Wu, and S. Y. Tong, Phys. Rev. B 59, 1657

(1999).
[17] T. Fujikawa, J. Phys. Soc. Japan, 62, 2155 (1993); T.

Fujikawa, K. Nakamura, S. Nagamatsu, and J. J. Rehr,
J. Phys. Soc. Japan. xx, xxxx (in press,2001).

[18] F. Farges, G. E. Brown, Jr., J. J. Rehr, Phys. Rev. B 56,
1809 (1997).

[19] W. H. Press, et al., Numerical Recipes in FORTRAN,
(Cambridge University Press) 1992, p. 77.

[20] A.P. Hitchcock, T. Tyliszczak, P. Aebi, J.Z. Xiong, T.K.
Sham, K.M. Baines, K.A. Mueller, X.H. Feng, J.M.
Chen, B.X. Yang, Z.H. Lu, J.M. Baribeau and T.E.
Jackman, Surface Science 291, 349 (1993); J.C. Aubry,
T. Tyliszczak, A.P. Hitchcock, J.-M. Baribeau and T.E.
Jackman, Phys. Rev. B 59, 12872 (1999).

[21] A. M. Flank, private communication.
[22] B. Ravel, Ph. D. Thesis (Univ. of Washington, Seattle,

1999, unpublished).
[23] A. Poiarkova, J. J. Rehr, Phys. Rev. B 59, 948 (1999).
[24] K. C. Jea, D. M. Young, Linear Algebra Appl. 52/53,

399 (1983).

APPENDIX A: LANCZOS/LU ALGORITHM FOR
A SYSTEM OF LINEAR EQUATIONS

In this Appendix we present the details of our Lanc-
zos/LU version of the BiCG method to solve a system
of linear equations A|x〉 = |b〉, which is applicable to a
complex, non-symmetric matrix A. Although the con-
tinued fraction expression for A−1

1,1 is highly successful in

many practical applications, e.g., x-ray absorption[14],
electronic structure[13], and vibrational motion[23], it is
limited to a single element of the inverse matrix. Thus we
aim to extend the method to obtain the full column vec-
tor A−1

n,1. This is equivalent to solving a general system
of linear equations, and is necessary in many other phys-
ical applications, e.g. XPS[5]. In order to keep the same
result for A−1

1,1 as the continued fraction we first perform
a Lanczos transformation of A to the same tridiagonal
form, and then carry out it’s LU decomposition. As a re-

sult we obtain recursive expressions for both the iterative
solution of the inverse matrix elements and the residual
(|r〉 = |b〉 −A|x〉).

The essence of the Lanczos algorithms is a 3-term re-
cursion relation[4] Eq. (A1), which by construction tri-
diagonalizes an arbitrary complex (not-necessarily Her-
mitian) matrix A in a biorthonormal set of basis states
|n〉 and 〈n|, n = 1, 2, . . .N , with the same coefficients an

and bn, i.e.,

bn|n + 1〉 = A|n〉 − an|n〉 − bn−1|n− 1〉

bn〈n + 1| = 〈n|A− an〈n| − bn−1〈n− 1|. (A1)

In this basis, 〈n|n′〉 = δnn′ , and the only non zero matrix
elements are 〈n|A|n〉 = an and 〈n + 1|A|n〉 = 〈n|A|n +
1〉 = bn. For Hermitian matrices A, only one of the above
equations is needed, and the coefficients an and bn are
real, but we cannot take advantage of that simplification
in this work.

The LU decomposition of the resulting tridiagonal ma-
trix can be also updated on each iteration. Both the L
and U matrices are bidiagonal, and their only nonzero
matrix elements are given by

Ln, n = 1

Un, n = αn = an − bn−1αn−1

Ln+1,n = βn = bn/αn

Un,n+1 = bn. (A2)

After n steps we find the iterative solution |xn〉 of the sys-
tem of linear equations A|x〉 = |b〉, by using the incom-
plete bidiagonal L and U matrices in two steps solving
sequentially L|y〉 = |b〉 and U |xn〉 = |y〉 problems. The
intermediate vector |y〉 =

∑

γn|n〉 is found by forward
substitution, and on the n-th iteration only γn changes
from zero to the calculated value, while all previous com-
ponents remain the same.

|yn+1〉 = |yn〉+ γn+1|n + 1〉 (A3)

γn+1 = −βnγn.

The |xn〉 and residual rn〉 are found from |yn〉 by back-
ward substitution using the complimentary vectors |zn〉
and |sn〉,

|zn+1〉 = |n + 1〉 − (bn/αn)|zn〉

|sn+1〉 = A|n + 1〉 − (bn/αn)|sn〉. (A4)

Finally the following recursion relations are obtained for
the iterative solution |xn〉 and the residual |rn〉 = |b〉 −
A|xn〉:

|xn+1〉 = |xn〉+ (γn+1/αn+1)|zn+1〉.

|rn+1〉 = |rn〉 − (γn+1/αn+1)|sn+1〉 (A5)

This algorithm for the solution of a general system
of linear equations can be summarized in the following
pseudo-code:

12

START Lanczos/LU:

|x0〉 = 0

|1〉 = |z1〉 = |r0〉 = |b〉 −A|x0〉,

|s1〉 = A|1〉

〈1| = |1〉†/〈1|1〉

α1 = a1 = 〈1|A|1〉

γ1 = 1

|x1〉 = |x0〉+ (γ1/α1)|z1〉,

|r1〉 = |r0〉 − (γ1/α1)|s1〉. (A6)

DO n=1, nitx
1. Perform Lanczos transformation: get bn (the dot prod-
uct of right hand sides of Eq. (A1) gives b2

n), new basis
vectors |n + 1〉 and 〈n + 1|, and finally an+1.
2. Update LU decomposition: βn, αn+1 and γn+1 using
Eqs. (A2) and (A3).
3. Use recursion relations (A4)-(A5) to update solution
|xn+1〉 and residual vector |rn+1〉.
4. STOP when all components of residual are less than
a tolerance: |rn,i| < t1.
ENDDO

This procedure tends to run out of precision typically
after about 100 iterations (with single-precision arith-
metic), and needs to be restarted with |x0〉 = |xn〉 in
Eq. (A6).

Notice that the most time consuming part of the al-
gorithm is the Lanczos transformation itself [Eq. (A1)],
which requires two multiplications of a vector by the ma-
trix A per iteration, unless A is Hermitian, in which case
only one multiplication is needed. For an arbitrary ma-
trix A, this algorithm actually solves both the A|x〉 = |b〉
and the 〈x|A = |b〉† problems. By construction, our
method gives the same result as the continued-fraction
expression for A−1

1,1 when the vector |b〉 components are

bi = δi,1, where i refers to the original basis states (i.e.,

|i〉 = |LR〉, and |1〉 the chosen initial state of the Lanczos
procedure. However, Lanczos/LU also yields an entire
vector or column of the inverse matrix, A−1

i,1 at no ad-
ditional computational cost, since it can be found from
iterative solution as the component in the original basis
of the approximate solution |xn〉 ≈ |x〉, i.e.

A−1
i,1 = 〈i|x〉. (A7)

Notice that the first row of the matrix A can also be found
at no additional cost if needed, since Eq.(A3)-(A5) hold
for the bra-vectors as well as for ket-vectors and

A−1
1,i = 〈x|i〉, (A8)

i.e. the i-th component of the first row is given by the
i-th component of the vector 〈xn|.

The Lanczos/LU algorithm is mathematically sim-
ilar to other forms of the Lanczos biorthogo-
nal conjugate gradient (BiCG) approach, like Lanc-
zos/Orthodir, Lanczos/Orthomin, Lanczos/Orthores,
and BiO algorithms[12, 24]. All of these methods dif-
fer in various details, and the main distinction of our
Lanczos/LU approach is that the Lanczos transformation
is carried out explicitly, which maintains the continued-
fraction value for the component A−1

1,1, while in other ver-
sions this equivalence is only implicit. Remarkably Lanc-
zos/LU algorithm appears to be substantially more stable
numerically than most other Lanczos type algorithms in-
vestigated here. Thus we had to restart the Lanczos/LU
iterations only after about 100 iterations (for single preci-
sion complex matrix A) due to degraded numerical preci-
sion, while with others we had to restart the iterative pro-
cess about every 20 iterations. Only BiCGStab method
was faster than Lanczos/LU for our MS calculations, but
this method lacks stability for large matrix dimensions
while many other Lanczos-type methods sometimes failed
to converge.

